JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Homochiral [2.2]Paracyclophane Self-Assembly Promoted by Transannular Hydrogen Bonding.

Angewandte Chemie 2016 August 27
[2.2]paracyclophane (pCp), unlike many π-building blocks, has been virtually unexplored in supramolecular constructs. Reported here is the synthesis and characterization of the first pCp derivatives capable of programmed self-assembly into extended cofacial π-stacks in solution and the solid state. The design employs transannular (intramolecular) hydrogen bonds (H-bonds), hitherto unstudied in pCps, between pseudo-ortho-positioned amides of a pCp-4,7,12,15-tetracarboxamide (pCpTA) to preorganize the molecules for intermolecular H-bonding with π-stacked neighbors. X-ray crystallography confirms the formation of homochiral, one-dimensional pCpTA stacks helically laced with two H-bond strands. The chiral sense is dictated by the planar chirality (Rp or Sp ) of the pCpTA monomers. A combination of NMR, IR, and UV/Vis studies confirms the formation of the first supramolecular pCp polymers in solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app