Add like
Add dislike
Add to saved papers

Efficacy of β-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia.

Community-acquired pneumonia is a common disease with considerable morbidity and mortality, for which Streptococcus pneumoniae is accepted as a leading cause. Although β-lactam-plus-macrolide combination therapy for this disease is recommended in several guidelines, the clinical efficacy of this strategy against pneumococcal pneumonia remains controversial. In this study, we examined the effects of β-lactam-plus-macrolide combination therapy on lethal mouse pneumococcal pneumonia and explored the mechanisms of action in vitro and in vivo We investigated survival, lung bacterial burden, and cellular host responses in bronchoalveolar lavage fluids obtained from mice infected with pneumonia and treated with ceftriaxone, azithromycin, or both in combination. Although in vitro synergy was not observed, significant survival benefits were demonstrated with combination treatment. Lung neutrophil influx was significantly lower in the ceftriaxone-plus-azithromycin-treated group than in the ceftriaxone-treated group, whereas no differences in the lung bacterial burden were observed on day 3 between the ceftriaxone-plus-azithromycin-treated group and the ceftriaxone-treated group. Notably, the analysis of cell surface markers in the ceftriaxone-plus-azithromycin combination group exhibited upregulation of presumed immune checkpoint ligand CD86 and major histocompatibility complex class II in neutrophils and CD11b-positive CD11c-positive (CD11b(+) CD11c(+)) macrophages and dendritic cells, as well as downregulation of immune checkpoint receptors cytotoxic-T lymphocyte-associated antigen 4 and programmed death 1 in T helper and T regulatory cells. Our data demonstrate that the survival benefits of ceftriaxone-plus-azithromycin therapy occur through modulation of immune checkpoints in mouse pneumococcal pneumonia. In addition, immune checkpoint molecules may be a novel target class for future macrolide research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app