JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Suppressed Production of Soluble Fms-Like Tyrosine Kinase-1 Contributes to Myocardial Remodeling and Heart Failure.

Hypertension 2016 September
Soluble fms-like tyrosine kinase-1 (sFlt-1), an endogenous inhibitor of vascular endothelial growth factor and placental growth factor, is involved in the pathogenesis of cardiovascular disease. However, the significance of sFlt-1 in heart failure has not been fully elucidated. We found that sFlt-1 is decreased in renal failure and serves as a key molecule in atherosclerosis. In this study, we aimed to investigate the role of the decreased sFlt-1 production in heart failure, using sFlt-1 knockout mice. sFlt-1 knockout mice and wild-type mice were subjected to transverse aortic constriction and evaluated after 7 days. The sFlt-1 knockout mice had significantly higher mortality (52% versus 15%; P=0.0002) attributable to heart failure and showed greater cardiac hypertrophy (heart weight to body weight ratio, 8.95±0.45 mg/g in sFlt-1 knockout mice versus 6.60±0.32 mg/g in wild-type mice; P<0.0001) and cardiac dysfunction, which was accompanied by a significant increase in macrophage infiltration and cardiac fibrosis, than wild-type mice after transverse aortic constriction. An anti-placental growth factor-neutralizing antibody prevented pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, monocyte chemoattractant protein-1 expression was significantly increased in the hypertrophied hearts of sFlt-1 knockout mice compared with wild-type mice. Monocyte chemoattractant protein-1 inhibition with neutralizing antibody ameliorated maladaptive cardiac remodeling in sFlt-1 knockout mice after transverse aortic constriction. In conclusion, decreased sFlt-1 production plays a key role in the aggravation of cardiac hypertrophy and heart failure through upregulation of monocyte chemoattractant protein-1 expression in pressure-overloaded heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app