Historical Article
Journal Article
Review
Add like
Add dislike
Add to saved papers

The significance of selegiline/(-)-deprenyl after 50 years in research and therapy (1965-2015).

Molecular Psychiatry 2016 November
Deprenyl/Selegiline (DEP), created by Joseph Knoll in the 1960s, registered in more than 60 countries to treat Parkinson's disease, Alzheimer's disease, major depressive disorder; and used as an anti-aging drug, achieved its place in research and therapy as the first selective inhibitor of B-type monoamine oxidase (MAO-B). The demonstration that the DEP analog (-)-1-phenyl-2-propylaminopentane devoid of MAO inhibitory property, enhanced like DEP the activity of the catecholaminergic brain engine revealed that this effect is unrelated to the selective inhibition of MAO-B. β-Phenylethylamine (PEA), the important trace-amine in the mammalian brain, is known to be a releaser of catecholamines. Amphetamine and methamphetamine, the best known synthetic PEA derivatives are also releasers of catecholamines like their parent compound. DEP is a unique synthetic PEA derivative devoid of the catecholamine releasing property. As the releasing effect conceals the catecholaminergic activity enhancer (CAE) effect, it remained undiscovered until DEP uncovered that PEA is a natural CAE substance; and only releases catecholamines in high concentration. Discovering that tryptamine is a natural enhancer of catecholaminergic and serotonergic neurons catalyzed the development of R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane (BPAP); the most potent and selective enhancer substance, and it exerts its enhancer effect in 0.0001 mg kg-1 . DEP and BPAP initiated an analysis of the enhancer regulation in the mammalian brain. Studies regarding the nature of the enhancer regulation revealed that this regulation is enhanced after weaning and sex hormones return it to the pre-weaning level. Thus, sex hormones elicit the transition of the developmental phase of life into the post-developmental, downhill (aging) period. The aging-related, slow decline in the enhancer regulation of the catecholaminergic brain engine, the main activator of the cortex, is the prime factor of brain aging. The enhancer regulation's decay in the most rapidly aging dopaminergic system is, for example, mainly responsible for the decline in learning ability and sexual activity over time. According to the Knoll concept, based on two longevity studies performed on male rats, to keep the catecholaminergic brain engine, from the beginning of the downhill period of life, via the administration of a small daily dose of a CAE substance (presently DEP is the only available drug) on a higher activity level, thus to fight against the physiological aging-related slow decay of the catecholaminergic system, is a suitable anti-aging therapy. As our present knowledge regarding the enhancer regulation in the mammalian brain is like seeing a peak of an iceberg, the future of this new line of brain research looks promising from both theoretical and practical aspects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app