Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3-δ.

ACS Nano 2016 August 24
Recently, electrolyte gating techniques employing ionic liquids/gels in electric double layer transistors have proven remarkably effective in tuning charge carrier density in a variety of materials. The ability to control surface carrier densities at levels above 10(14) cm(-2) has led to widespread use in the study of superconductivity, insulator-metal transitions, etc. In many cases, controversy remains over the doping mechanism, however (i.e., electrostatic vs electrochemical (e.g., redox-based)), and the technique has been less applied to magnetic materials. Here, we discuss ion gel gating of nanoscale 8-unit-cell-thick hole-doped La0.5Sr0.5CoO3-δ (LSCO) films, probing in detail the critical bias windows and doping mechanisms. The LSCO films, which are under compressive stress on LaAlO3(001) substrates, are metallic and ferromagnetic (Curie temperature, TC ∼ 170 K), with strong anomalous Hall effect and perpendicular magnetic anisotropy. Transport measurements reveal that negative gate biases lead to reversible hole accumulation (i.e., predominantly electrostatic operation) up to some threshold, whereas positive bias immediately induces irreversibility. Experiments in inert/O2 atmospheres directly implicate oxygen vacancies in this irreversibility, supported by atomic force microscopy and X-ray photoelectron spectroscopy. The results are thus of general importance, suggesting that hole- and electron-doped oxides may respond very differently to electrolyte gating. Reversible voltage control of electronic/magnetic properties is then demonstrated under hole accumulation, including resistivity, magnetoresistance, and TC. The sizable anomalous Hall coefficient and perpendicular anisotropy in LSCO provide a particularly powerful probe of magnetism, enabling direct extraction of the voltage-dependent order parameter and TC shift. The latter amounts to ∼7%, with potential for much stronger modulation at lower Sr doping.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app