JOURNAL ARTICLE
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Accurate Delineation of Glioma Infiltration by Advanced PET/MR Neuro-Imaging (FRONTIER Study): A Diagnostic Study Protocol.

Neurosurgery 2016 October
BACKGROUND: Glioma imaging, used for diagnostics, treatment planning, and follow-up, is currently based on standard magnetic resonance imaging (MRI) modalities (T1 contrast-enhancement for gadolinium-enhancing gliomas and T2 fluid-attenuated inversion recovery hyperintensity for nonenhancing gliomas). The diagnostic accuracy of these techniques for the delineation of gliomas is suboptimal.

OBJECTIVE: To assess the diagnostic accuracy of advanced neuroimaging compared with standard MRI modalities for the detection of diffuse glioma infiltration within the brain.

METHODS: A monocenter, prospective, diagnostic observational study in adult patients with a newly diagnosed, diffuse infiltrative glioma undergoing resective glioma surgery. Forty patients will be recruited in 3 years. Advanced neuroimaging will be added to the standard preoperative MRI. Serial neuronavigated biopsies in and around the glioma boundaries, obtained immediately preceding resective surgery, will provide histopathologic and molecular characteristics of the regions of interest, enabling comparison with quantitative measurements in the imaging modalities at the same biopsy sites.

DISCUSSION: In this clinical study, we determine the diagnostic accuracy of advanced imaging in addition to standard MRI to delineate glioma. The results of our study can be valuable for the development of an improved standard imaging protocol for glioma treatment.

EXPECTED OUTCOME: We hypothesize that a combination of positron emission tomography, MR spectroscopy, and standard MRI will have a superior accuracy for glioma delineation compared with standard MRI alone. In addition, we anticipate that advanced imaging will correlate with the histopathologic and molecular characteristics of glioma.

ABBREVIATIONS: CHO, [11C-]CholineCRF, case report formsFET, [18F-]Fluoroethyl-tyrosineFLAIR, fluid-attenuated inversion recoveryMETC, Medical Ethical CommitteeMRS, magnetic resonance spectroscopyPET, positron emission tomographyVUmc, VU University Medical Center.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app