Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Utilizing the Discrete Element Method for the Modeling of Viscosity in Concentrated Suspensions.

The rheological behavior of concentrated suspensions is a complicated problem because it originates in the collective motion of particles and their interaction with the surrounding fluid. For this reason, it is difficult to accurately model the effect of various system parameters on the viscosity even for highly simplified systems. We model the viscosity of a hard-sphere suspension subjected to high shear rates using the dynamic discrete element method (DEM) in three spatial dimensions. The contact interaction between particles was described by the Hertz model of elastic spheres (soft-sphere model), and the interaction of particles with flow was accounted for by the two-way coupling approach. The hydrodynamic interaction between particles was described by the lubrication theory accounting for the slip on particle surfaces. The viscosity in a simple-shear model was evaluated from the force balance on the wall. The obtained results are in close agreement with literature data for systems with hard spheres. Namely, the viscosity is shown to be independent of shear rate and primary particle size for monodisperse suspensions. In accordance with theory and experimental data, the viscosity grows rapidly with particle volume fraction. We show that this rheological behavior is predominantly caused by the lubrication forces. A novel approach based on the slip of water on a particle surface was developed to overcome the divergent behavior of lubrication forces. This approach was qualitatively validated with literature data from AFM measurements using a colloidal probe. The model presented in this work represents a new, robust, and versatile approach to the modeling of viscosity in suspensions with the possibility to include various interaction models and study their effect on viscosity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app