Add like
Add dislike
Add to saved papers

Heme dampens T-cell sequestration by modulating glial cell responses during rodent cerebral malaria.

Cerebral malaria is the deadliest complication of Plasmodium falciparum infection. Its pathophysiology is associated with a strong pro-inflammatory reaction and the activation of glial cells. Among modulators released during the infection, heme seems to play a controversial role in the pathophysiology of malaria. Herein, we first investigated the phenotype of glial cells during cerebral malaria in C57BL/6 mice infected with P. berghei ANKA. Given the fact that high levels of heme were associated with cerebral malaria, we then investigated its impact on microglial, astrocyte, and T cell responses to further clarify its contribution in the neuropathophysiology. Surprisingly, we found that administration of heme twice a day from day three of infection induced the expression of the Heme oxygenase-1 (Hmox1) gene and prevented brain damages. More specifically, heme inhibited the M1 phenotype of microglia, hampered the activation of astrocytes, and decreased the cerebral expression of Ifng, Tnfa and Ip10. Heme might that way alter the migration of pathogenic CD4 and CD8 T lymphocytes within the brain observed during cerebral malaria. Taking into account that cerebral malaria results from a complex interplay between host- and parasite-derived factors, it is possible that genetic polymorphisms of Hmox1, which could be associated with the control of systemic levels of heme during P. falciparum infection, might explain its dual role and its contribution to the resistance to cerebral malaria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app