Add like
Add dislike
Add to saved papers

Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration.

Acta Biomaterialia 2016 October 2
UNLABELLED: As manipulation of gene expression by virtue of microRNAs (miRNAs) is one of the emerging strategies for cardiovascular disease remedy, local delivery of miRNAs to a specific vascular tissue is challenging. In this work, we developed an efficient delivery system composed of electrospun fibrous membranes and target carriers for the intracellular delivery of miRNA-126 (miR-126) to vascular endothelial cells (VECs) in the local specific vascular environment. A bilayer vascular scaffold was specially prepared via emulsion electrospinning of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) and dual-power electrospinning of poly(ε-caprolactone) (PCL) and gelatin. The inner layer of PELCL, which was loaded with complexes of miR-126 in REDV peptide-modified trimethyl chitosan-g-poly(ethylene glycol), regulated the response of VECs, while the outer layer of PCL/gelatin contributed to the mechanical stability. Biological activities of the miR-126-loaded electrospun membranes were evaluated by cell proliferation and SPRED-1 expression of a miR-126 target gene. By encapsulating targeting complexes of miR-126 in the electrospun membranes, a sustained release profile of miRNA was obtained for 56days. Significant down-regulation of SPRED-1 gene expression in VECs was detected on day 3, and it was found that miR-126 released from the electrospun membranes accelerated VEC proliferation in the first 9days. The bilayer vascular scaffold loaded with miR-126 complexes could also improve endothelialization in vivo. These results demonstrated the potential of this approach towards a new and more effective delivering system for local delivery of miRNAs to facilitate blood vessel regeneration.

STATEMENT OF SIGNIFICANCE: Tissue engineering of small-diameter blood vessels is still challenging because of thrombosis and low long-term patency. The manipulation of gene expression by miRNAs could be a novel strategy in vascular regeneration. Here, we report an efficient delivery system of electrospun fibrous scaffold combined with REDV peptide-modified trimethyl chitosan for targeted intracellular delivery of miR-126 to VECs in the local vascular environment. Results exhibited that miR-126 released from the electrospun membrane could modulate VEC proliferation via down-regulation of SPRED-1 gene expression. The electrospun scaffolds loaded with target-delivery carriers may serve as an ideal platform for local delivery of miRNAs in the vascular tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app