Journal Article
Review
Add like
Add dislike
Add to saved papers

Nano-theranostics and Nitroxyl Radical-labeled Antitumor Agents for Magnetic Resonance Imaging.

The advent of functional contrast agents and nanoparticle drug delivery systems (nano-DDS) is opening new pathways to understanding pathophysiology using magnetic resonance imaging (MRI). Nitroxyl radical compounds are promising functional contrast agents for redox evaluation. We have developed a novel nitroxyl radical theranostic compound for noninvasive real-time imaging of blood-brain barrier-permeable antitumor drugs. Divalent manganese ions (Mn(2+)) can also be used as an intracellular functional MRI contrast agent. Manganese-enhanced MRI (MEMRI) provides a unique opportunity to study neuronal activation and architecture. Extracellular Mn(2+) can enter cells through NMDA receptors for glutamate and/or voltage-gated calcium channels. Thus, Mn(2+) can behave as a functional contrast agent depending on the cellular activity/viability. This paper summarizes the recent progress in MEMRI for neuroimaging and cancer research. Nanocarriers for DDS can contain multiple functional elements, such as therapeutic drugs, MRI contrast agents, fluorescent dyes, and radioisotopes, without significant changes in the particle kinetics/dynamics. Various materials have also been reported as nano-DDS carriers, including micelles, liposomes, dendrimers, quantum dots, and carbon materials such as fullerenes, with each material providing a different set of characteristics as a nano-DDS carrier. Our recent research into nano-DDS-based contrast agents and the theranostic applications is also outlined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app