Add like
Add dislike
Add to saved papers

Microglial phospholipase D4 deficiency influences myelination during brain development.

Phospholipase D4 (PLD4) is expressed in activated microglia that transiently appear in white matter during postnatal brain development. Previous knockdown experiments using cultured microglia showed PLD4 involvement in phagocytosis and proliferation. To elucidate the role of PLD4 in vivo, PLD4-deficient mice were generated and the cerebella were examined at postnatal day 5 (P5) and P7, when PLD4 expression is highest in microglia. Wild type microglia showed strong immunoreactivity for microglial marker CD68 at P5, whereas CD68 signals were weak in PLD4-deficient microglia, suggesting that loss of PLD4 affects microglial activation. At P5 and P7, immunostaining for anti-myelin basic protein (MBP) antibody indicated a mild but significant delay in myelination in PLD4-deficient cerebellum. Similar change was also observed in the corpus callosum at P7. However, this difference was not apparent at P10, suggesting that microglial PLD4-deficiency primarily influences the early myelination stage. Thus, microglia may have a transient role in myelination via a PLD4-related mechanism during development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app