JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of particle shape anisotropy on crack formation in drying of colloidal suspension.

Scientific Reports 2016 August 2
Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app