JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis.

Cell Stem Cell 2016 October 7
The genome-wide localization and function of endogenous Dnmt3a and Dnmt3b in adult stem cells are unknown. Here, we show that in human epidermal stem cells, the two proteins bind in a histone H3K36me3-dependent manner to the most active enhancers and are required to produce their associated enhancer RNAs. Both proteins prefer super-enhancers associated to genes that either define the ectodermal lineage or establish the stem cell and differentiated states. However, Dnmt3a and Dnmt3b differ in their mechanisms of enhancer regulation: Dnmt3a associates with p63 to maintain high levels of DNA hydroxymethylation at the center of enhancers in a Tet2-dependent manner, whereas Dnmt3b promotes DNA methylation along the body of the enhancer. Depletion of either protein inactivates their target enhancers and profoundly affects epidermal stem cell function. Altogether, we reveal novel functions for Dnmt3a and Dnmt3b at enhancers that could contribute to their roles in disease and tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app