Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode.

PURPOSE: To optimize single-insertion bipolar irreversible electroporation (IRE) by characterizing effects of electric parameters and controlling tissue electric properties in a porcine model.

MATERIALS AND METHODS: Single-insertion electrode bipolar IRE was performed in 28 in vivo pig livers (78 ablations). First, effects of voltage (2,700-3,000 V), number of pulses, repeated cycles (1-6 cycles), and pulse width (70-100 µs) were studied. Next, electric conductivity was altered by instillation of hypertonic and hypotonic fluids. Finally, effects of thermal stabilization were assessed using internal electrode cooling. Treatment effect was evaluated 2-3 hours after IRE. Dimensions were compared and subjected to statistical analysis.

RESULTS: Delivering 3,000 V at 70 µs for a single 90-pulse cycle yielded 3.8 cm ± 0.4 × 2.0 cm ± 0.3 of ablation. Applying 6 cycles of energy increased ablation to 4.5 cm ± 0.4 × 2.6 cm ± 0.3 (P < .001). Further increasing pulse lengths to 100 µs (6 cycles) increased ablation to 5.0 cm ± 0.4 × 2.9 cm ± 0.3 (P < .001) but resulted in electric spikes and system crashes in 40%-50% of cases. Increasing tissue electric conductivity via hypertonic solution instillation in surrounding tissues increased frequency of generator crashes, whereas continuous instillation of distilled water eliminated this arcing phenomenon but reduced ablation to 2.3 cm ± 0.1. Controlled instillation of distilled water when electric arcing was suspected from audible popping produced ablations of 5.3 cm ± 0.6 × 3.1 cm ±0.3 without crashes. Finally, 3.1 cm ± 0.1 short-axis ablation was achieved without system crashes with internal electrode perfusion at 37°C versus 2.3 cm ± 0.1 with 4°C-10°C perfusion (P < .001).

CONCLUSIONS: Bipolar IRE ablation zones can be increased with repetitive high voltage and greater pulse widths accompanied by either judicious instillation of hypotonic fluids or internal electrode perfusion to minimize unwanted electric arcing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app