Add like
Add dislike
Add to saved papers

Prediction of the antiglycation activity of polysaccharides from Benincasa hispida using a response surface methodology.

Carbohydrate Polymers 2016 October 21
Benincasa hispida is a popular vegetable in China. Our previous experiments suggested that polysaccharides isolated from B. hispida fruits (PBH) have antiglycation effect and DPPH free radical scavenging activity. Ultrasonic treatments can be used to extract polysaccharides from Benincasa hispida (PBH). The aim of this study was to investigate the correlation between the ultrasonic treatment conditions and the antiglycation activity of PBH. A mathematical model was generated with an artificial neural network (ANN) toolbox from MATLAB to analyze the effects of ultrasonic treatment conditions on antiglycation activity. The response surface plots showed relationships between ultrasonic extraction conditions and bioactivity. The R(2) value of the model was 0.9919, which suggested good fitness of the neural network. The application of genetic algorithms showed that the optimal ultrasonic extraction conditions resulted in the highest antiglycation activity for PBH. These were 150W, 46°C, and 35min. These conditions produced a predicted antiglycation activity of 41.2%; the actual activity was 40.9% under optimal conditions. This is very close to the predicted value. The experimental data indicated that the PBH possessed both antiglycation and antioxidant activities. The maximum actual value of antiglycation was 101.7% that of the positive control, and the PBH inhibited the DPPH free radicals with an EC50 value of 0.98mg/mL. This is 66.2% that of ascorbic acid. These results explained the observations that B. hispida can decrease glucose levels in diabetic patients. The experimental results also showed that the ANN could be used for optimization and prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app