Add like
Add dislike
Add to saved papers

Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

Carbohydrate Polymers 2016 October 21
Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app