Add like
Add dislike
Add to saved papers

Responses to elevated CO 2 exposure in a freshwater mussel, Fusconaia flava.

Freshwater mussels are some of the most imperiled species in North America and are particularly susceptible to environmental change. One environmental disturbance that mussels may encounter that remains understudied is an increase in the partial pressure of CO2 (pCO2 ). The present study quantified the impacts of acute (6 h) and chronic (up to 32 days) exposures to elevated pCO2 on genes associated with shell formation (chitin synthase; cs) and the stress response (heat shock protein 70; hsp70) in Fusconaia flava. Oxygen consumption (MO2 ) was also assessed over the chronic CO2 exposure period. Although mussels exhibited an increase in cs following an acute exposure to elevated pCO2 , long-term exposure resulted in a decrease in cs mRNA abundance, suggesting that mussels may invest less in shell formation during chronic exposure to elevated pCO2 . In response to an acute elevation in pCO2 , mussels increased hsp70 mRNA abundance in mantle and adductor muscle and a similar increase was observed in the gill and adductor muscle in response to a chronic elevation in pCO2 . A chronic elevation in pCO2 also increased mussel MO2 . This overall increase in hsp70 mRNA levels and MO2 in F. flava indicates that exposure to elevated pCO2 initiates activation of the general stress response and an increased energy demand. Together, the results of the present study suggest that freshwater mussels respond to elevated pCO2 by increasing processes necessary to 'deal with' the stressor and, over the long-term, may reduce their investment in non-essential processes such as shell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app