Add like
Add dislike
Add to saved papers

Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov., isolated from a deep natural gas storage aquifer.

Two novel strictly anaerobic bacteria, strains Bs105T and Bs107T, were isolated from a deep aquifer-derived hydrocarbonoclastic community. The cells were rod-shaped, not motile and had terminal spores. Phylogenetic affiliation and physiological properties revealed that these isolates belong to two novel species of the genus Desulfotomaculum. Optimal growth temperatures for strains Bs105T and Bs107T were 42 and 45 °C, respectively. The estimated G+C content of the genomic DNA was 42.9 and 48.7 mol%. For both strains, the major cellular fatty acid was palmitate (C16 : 0). Specific carbon fatty acid signatures of Gram-positive bacteria (iso-C17 : 0) and sulfate-reducing bacteria (C17 : 0cyc) were also detected. An insertion was revealed in one of the two 16S rRNA gene copies harboured by strain Bs107T. Similar insertions have previously been highlighted among moderately thermophilic species of the genus Desulfotomaculum. Both strains shared the ability to oxidize aromatic acids (Bs105T: hydroquinone, acetophenone, para-toluic acid, 2-phenylethanol, trans-cinnamic acid, 4-hydroxybenzaldehyde, benzyl alcohol, benzoic acid 4-hydroxybutyl ester; Bs107T: ortho-toluic acid, benzoic acid 4-hydroxybutyl ester). The names Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov. are proposed for the type strains Bs105T (=DSM 24088T=JCM 31386T) and Bs107T (=DSM 24093T=JCM 31387T).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app