Journal Article
Review
Add like
Add dislike
Add to saved papers

α-Synuclein-carrying extracellular vesicles in Parkinson's disease: deadly transmitters.

Exosomes play a key role in delivery of various biological material and complex signals from one cell to another at long distances. These small extracellular vehicles are involved in mediating multiple physiological and pathogenic processes. In neurodegenerative diseases such as Parkinson's disease (PD), exosomes contribute to disease propagation through transferring misfolded proteins from affected cells to normal cells. In PD, progressive degeneration of neurons arises from the extensive accumulation of toxic forms of α-synuclein in the cytoplasm. α-Synuclein could exist in several forms, some of which (i.e., oligomeric and polymeric forms) are cytotoxic. Neuron-derived exosomes were found to transfer α-synuclein toxic forms between neuronal and non-neuronal cells (such as astrocytes and microglia) thereby contributing to PD spreading. Deposition of α-synuclein in glial cells induces inflammation that could be further propagated to other glial cells and neurons. Neuroinflammation promotes degeneration of neurons and aggravates the pathogenesis of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app