Add like
Add dislike
Add to saved papers

Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex.

Brain Sciences 2016 July 28
BACKGROUND: Transcranial direct current stimulation (tDCS) is emerging as a promising adjuvant to enhance motor function. However, there has been increasing reservations about the reliability and variability of the neuromodulatory effects evoked by tDCS.

OBJECTIVE/HYPOTHESIS: The main purpose of this study was to explore the test-retest reliability and inter-individual variability of tDCS of the lower limb M1 and the relationship between transcranial magnetic stimulation (TMS)-related measures and tDCS-induced changes.

METHODS: Fifteen healthy participants received anodal tDCS of the lower limb M1 either when performing a lower limb motor task or when the limb was at rest. Each condition was tested twice. tDCS induced changes in corticomotor excitability of the tibialis anterior muscle were measured using TMS. A repeated measures ANOVA was performed to examine efficacy of tDCS between the two task conditions. Intraclass correlation coefficients (ICC) and variance component analyses were performed to examine reliability and variability respectively.

RESULTS: A significant increase in in corticomotor excitability was noted for the tDCS-task condition at 140% active motor threshold (AMT) and when comparing recruitment curve slopes, but not at 120% and 130% AMT. Overall, ICC values between testing days for each stimulation condition ranged from 0.6-0.9. Higher ICCs were seen for higher TMS intensities (140% AMT) and recruitment curve slopes. Inter-individual variability contributed to 34% of the exhibited variance.

CONCLUSIONS: Our data suggest that the TMS-related measure used to assess neuromodulation after tDCS has an effect on its perceived test-retest reliability and inter-individual variability. Importantly, we noticed that a high reliability and low variability does not necessarily indicate clinical efficacy of tDCS as some participants showed little to no modulation of corticomotor excitability consistently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app