Add like
Add dislike
Add to saved papers

Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.).

In this work, a label-free electrochemical biosensor was developed for sensitive and selective detection of mercury (II) ions (Hg(2+)) based on in-situ deposition of silver nanoparticles (AgNPs) on terminal deoxynucleotidyl transferase (TdT) extended ssDNA for signal output and nicking endonuclease for cycling amplification. In the presence of target Hg(2+), the T-rich DNA (HP1) could partly fold into duplex-like structure (termed as output DNA) via T-Hg(2+)-T base pairs and thus exposed its sticky end. The sticky end of output DNA could then hybridize with 3'-PO4 terminated capture DNA (HP2) on electrode surface to form output DNA-HP2 hybridization complex with the sequence 5'-CCTCAGC-3'/3'-GGAGTCG-5' (the sequence could be recognized by nicking endonuclease Nt. BbvCI). With the introduction of Nt. BbvCI, output DNA existed in hybridization complex was released from electrode and participated in the next hybridization process, accompanying with the cleave of HP2 to expose substantial 3'-OH group, which could be extended into a long ssDNA nanotail with the aid of TdT and deoxyadenosine triphosphate (dATP). Since the long negatively charged ssDNA nanotail absorbed the positively charged silver ions on the DNA skeleton, the metallic silver could be in-situ deposited on electrode surface for electrochemical signal output upon addition of reduction regent sodium borohydride. Under optimal conditions, the developed electrochemical biosensor presented a good response to Hg(2+) with a detection limit of 3 pM (S/N=3). Furthermore, the biosensor exhibited good reproducibility and high selectivity towards other interfering ions. The proposed sensing system also showed a promising potential application in real sample analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app