Add like
Add dislike
Add to saved papers

Gene expression profiling of common signal transduction pathways affected by rBMSCs/F92A-Cav1 in the lungs of rat with pulmonary arterial hypertension.

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with sustained vasoconstriction, inflammation and suppressed apoptosis of smooth muscle cells. Our previous studies have found that rat bone marrow-derived mesenchymal stem cells (rBMSCs) transduced with a mutant caveolin-1(F92A-Cav1) could enhance endothelial nitric oxide synthase (eNOS) activity and improve pulmonary vascular remodeling, but the potential mechanism is not yet fully explored. The present study was to investigate the gene expression profile upon rBMSCs/F92A-Cav1delivered to PAH rat to evaluate the role of F92A-Cav1 in its regulation.

METHODS: PAH was induced with monocrotaline (MCT, 60mg/kg) prior to delivery of lentiviral vector transduced rBMSCs expressing Cav1 or F92A-Cav1. Gene expression profiling was performed using Rat Signal Transduction PathwayFinder array. The expression changes of 84 key genes representing 10 signal transduction pathways in rat following rBMSCs/F92A-Cav1 treatment was examined.

RESULTS: Screening with the Rat Signal Transduction PathwayFinder R(2) PCR Array system and subsequent western blot, immunohistochemistry or real time PCR analysis revealed that F92A-Cav1 modified rBMSCs can inhibit the inflammation factors (TNF-alpha, Icam1 and C/EBPdelta), pro-proliferation genes (c-Myc, Bcl2a1d, Notch1and Hey2), oxidative stress gene (Hmox1) and activate cell cycle arrested gene Cdkn1a, ameliorating inflammation and inhibiting cell proliferation in PAH rat.

CONCLUSION: rBMSCs/F92A-Cav1 inhibits inflammation and cell proliferation by regulating signaling pathways that related to inflammation, proliferation, cell cycle and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app