Add like
Add dislike
Add to saved papers

Rapid dissemination of RET-transgene-driven melanoma in the presence of non-obese diabetic alleles: Critical roles of Dectin-1 and Nitric-oxide synthase type 2.

Mice transgenic for the RET oncogene provide a remarkable model for investigating the mechanisms underlying the promotion and the development of melanoma. This model was established on the C57BL/6 genetic background. In the present study, we investigated an effect of the strongly proinflammatory and autoimmune genetic makeup of the non-obese diabetic (NOD) strain. We bred (NODxB6)F1 mice and backcrossed them with NOD mice. F1 mice and mice at subsequent generations of backcrossing showed marked acceleration of tumor development, in particular with a more frequent and earlier extension of the primary uveal melanoma. In close relation with this severe evolution, we observed a profound drop in Dectin-1 expression on CD11b(+)Ly6G(+) granulocytic myeloid cells correlating with an expansion of CD4(+)Foxp3(+) T regulatory cell and of interferon(IFN)γ-producing CD8(+) T cell subsets in tumors. IFNγ is a major inducer of the type 2 nitric-oxide synthase (Nos2) gene whose products are known to be tumorigenic. Germline inactivation of the Nos2 gene was associated with a dramatically improved tumor prognosis and a restoration of Dectin-1 expression on myeloid cells. Moreover, in vivo treatment of (NODxB6)F1.RET(+) mice with curdlan, a glucose polymer that binds Dectin-1, prevented tumor extension and was associated with marked reduction of the CD4(+)Foxp3(+) T cell subset. These observations highlight the (NODxB6)F1.RET(+) mice as a new model to investigate the role of the immune system in the host-tumor relationship and point to Dectin-1 and Nos2 as potentially promising therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app