JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients.

PURPOSE OF REVIEW: The review focuses on fluid resuscitation of critically ill patients with either colloid or crystalloid solutions.

RECENT FINDINGS: In healthy patients, the volume expanding effect of colloids is greater than that of crystalloids. However, in critically ill patients, a similar amount of crystalloids and colloids is required for fluid resuscitation, suggesting a lower efficiency of colloids when capillary permeability is increased, and endothelial glycocalyx disrupted. Recent studies on synthetic colloids in surgical patients confirmed the increased risk of renal failure reported in large clinical trials performed in critically ill patients. Experimental studies suggest that albumin maintains plasma volume expansion efficiency even when the capillary permeability is impaired, and that extravasation of albumin to the interstitium is lower than that of hydroxyethyl starch.

SUMMARY: Fluid administration should be tailored to patient characteristics. Synthetic colloids should be avoided when possible, especially in patients at risk for kidney injury. In critically ill patients with suspected increased permeability, colloids may not be superior to crystalloids in expanding plasma volume. Albumin appears to be less harmful than synthetic colloids, although its beneficial effects need to be further investigated. The endothelial glycocalyx layer is the key structure finely regulating intravascular fluid distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app