Add like
Add dislike
Add to saved papers

Enoxaparin Attenuates Mouse Colon Cancer Liver Metastases by Inhibiting Heparanase and Interferon-γ-inducible Chemokines.

BACKGROUND/AIM: Low-molecular-weight heparin (LMWH) has been suggested to reduce the risk of cancer progression in both preclinical and clinical studies but the underlying mechanisms remain poorly explored. The aim of the study was to investigate the anti-metastatic role of enoxaparin, a clinically-used LMWH, in a murine model of colon cancer and to explore its underlying mechanisms.

MATERIALS AND METHODS: Using a reproducible mouse model of colon carcinomas, we assessed the capacity of enoxaparin, a LMWH, to affect tumor metastasis of colon carcinoma cell lines in mice.

RESULTS: The hepatic growth of colon carcinoma metastases was strongly inhibited by enoxaparin compared to (Ctrl) group (p=0.001). This effect was associated to an inhibition of heparanase mRNA expression and protein production both in vivo and in vitro. In addition, enoxaparin inhibited the liver and serum production of interferon gamma (Ifnγ)-inducible chemokine receptor ligands. Overexpression of heparanase prompted proliferation, migration and growth of colon carcinoma in vitro and in vivo to a point that was not affected by enoxaparin in vivo anymore.

CONCLUSION: Enoxaparin decreased liver metastases in a mouse model of colon carcinoma. These results suggest that enoxaparin may benefit patients with cancer and deserves further laboratory and clinical investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app