Add like
Add dislike
Add to saved papers

Identification of a Monoclonal Antibody That Attenuates Antiphospholipid Syndrome-Related Pregnancy Complications and Thrombosis.

In the antiphospholipid syndrome (APS), patients produce antiphospholipid antibodies (aPL) that promote thrombosis and adverse pregnancy outcomes. Current therapy with anticoagulation is only partially effective and associated with multiple complications. We previously discovered that aPL recognition of cell surface β2-glycoprotein I (β2-GPI) initiates apolipoprotein E receptor 2 (apoER2)-dependent signaling in endothelial cells and in placental trophoblasts that ultimately promotes thrombosis and fetal loss, respectively. Here we sought to identify a monoclonal antibody (mAb) to β2-GPI that negates aPL-induced processes in cell culture and APS disease endpoints in mice. In a screen measuring endothelial NO synthase (eNOS) activity in cultured endothelial cells, we found that whereas aPL inhibit eNOS, the mAb 1N11 does not, and instead 1N11 prevents aPL action. Coimmunoprecipitation studies revealed that 1N11 decreases pathogenic antibody binding to β2-GPI, and it blocks aPL-induced complex formation between β2-GPI and apoER2. 1N11 also prevents aPL antagonism of endothelial cell migration, and in mice it reverses the impairment in reendothelialization caused by aPL, which underlies the non-thrombotic vascular occlusion provoked by disease-causing antibodies. In addition, aPL inhibition of trophoblast proliferation and migration is negated by 1N11, and the more than 6-fold increase in fetal resorption caused by aPL in pregnant mice is prevented by 1N11. Furthermore, the promotion of thrombosis by aPL is negated by 1N11. Thus, 1N11 has been identified as an mAb that attenuates APS-related pregnancy complications and thrombosis in mice. 1N11 may provide an efficacious, mechanism-based therapy to combat the often devastating conditions suffered by APS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app