Add like
Add dislike
Add to saved papers

Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography.

Aims: Abnormal computed tomography coronary angiography (CTCA) often leads to stress testing to determine haemodynamic significance of stenosis. We hypothesized that instead, this could be achieved by fusion imaging of the coronary anatomy with 3D echocardiography (3DE)-derived resting myocardial deformation.

Methods and results: We developed fusion software that creates combined 3D displays of the coronary arteries with colour maps of longitudinal strain and tested it in 28 patients with chest pain, referred for CTCA (256 Philips scanner) who underwent 3DE (Philips iE33) and regadenoson stress CT. To obtain a reference for stenosis significance, coronaries were also fused with colour maps of stress myocardial perfusion. 3D displays were used to detect stress perfusion defect (SPD) and/or resting strain abnormality (RSA) in each territory. CTCA showed 56 normal arteries, stenosis <50% in 17, and >50% in 8 arteries. Of the 81 coronary territories, SPDs were noted in 20 and RSAs in 29. Of the 59 arteries with no stenosis >50% and no SPDs, considered as normal, 12 (20%) had RSAs. Conversely, with stenosis >50% and SPDs (haemodynamically significant), RSAs were considerably more frequent (5/6 = 83%). Overall, resting strain and stress perfusion findings were concordant in 64/81 arteries (79% agreement).

Conclusions: Fusion of CTCA and 3DE-derived data allows direct visualization of each coronary artery and strain in its territory. In this feasibility study, resting strain showed good agreement with stress perfusion, indicating that it may be potentially used to assess haemodynamic impact of coronary stenosis, as an alternative to stress testing that entails additional radiation exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app