Add like
Add dislike
Add to saved papers

Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.

This study presents in silico prediction of toxic activities and carcinogenicity, represented by the potential carcinogenicity DSSTox/DBS, based on vector regression with a new Kernel activity, and correlating the predicted toxicity values through a QSAR model, namely: QSTR/QSCarciAR (quantitative structure toxicity relationship/quantitative structure carcinogenicity-activity relationship) described by 2D, 3D descriptors and biological descriptors. The results showed a connection between carcinogenicity (compared to the structure of a compound) and toxicity, as a basis for future studies on this subject, but each prediction is based on structurally similar compounds and the reactivation of the substructures of these compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app