Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enrichment of Pyrrolic Nitrogen by Hole Defects in Nitrogen and Sulfur Co-Doped Graphene Hydrogel for Flexible Supercapacitors.

ChemSusChem 2016 August 24
The effect of the doping configuration and concentration of nitrogen (N) and sulfur (S) on the electrochemical performance of 3 D N and S co-doped hole defect graphene hydrogel (NS-HGH) electrodes is investigated. Surprisingly, by introducing a hole defect on the graphene surface, the difference in the doping concentrations of N and S can be used to effectively modulate the electrochemical behavior of the NS-HGH. The hole defects provide a rapid ion diffusion path. Finally, we showed that the intriguing specific capacitance (536 F g(-1) ) of the NS-HGH could enhance the overall performance of the pseudocapacitance and electric double layer capacitance. The rational design of the NS-HGH-based flexible solid state supercapacitor results in not only outstanding electrochemical performance with a maximum energy density of 14.8 Wh kg(-1) and power density of 5.2 KW kg(-1) but also in extraordinary mechanical flexibility and excellent cycle stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app