JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anisotropic optical and conductive properties of oriented 1D-nanoparticle thin films made by spray-assisted self-assembly.

Faraday Discussions 2016 October 7
We report on the fabrication of oriented anisotropic metal nanoparticle thin films made by Grazing Incidence Spraying (GIS) and on the anisotropic plasmonic properties of the resulting thin films. Gold nanorods of two different aspect ratios and silver nanowires were self-assembled as a uniaxially aligned monolayer with the GIS approach. In particular, we examine the influence of the nanowire/nanorod length and diameter on the degree of ordering determined by electron microscopy pictures. Furthermore, we show that the anisotropy of the optical properties (probed by polarized UV-visible-near infrared spectroscopy) strongly depend on the quality of alignment. The prepared monolayer thin films have an orientation order parameter of up to 0.83 for silver nanowires, which is reflected in an optical anisotropy of 0.57 in the UV-visible and 0.76 in the near infrared through the selective excitation of transverse and longitudinal surface plasmon resonance modes. The electronic transport in oriented silver nanowire monolayers is also shown to be highly directional, with the sheet resistance varying over almost an order of magnitude depending on the transport direction. Such anisotropic conductive plasmonic thin films may find applications in various fields like biochemical sensing, energy transport and harvesting or optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app