Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development.

The NF-κB signaling cascade relays external signals essential for B-cell growth and survival. This cascade is frequently hijacked by cancers that arise from the malignant transformation of germinal center (GC) B cells, underscoring the importance of deciphering the function of NF-κB in these cells. The NF-κB signaling cascade is comprised of two branches, the canonical and alternative NF-κB pathways, mediated by distinct transcription factors. The expression and function of the transcription factors of the alternative pathway, RELB and NF-κB2, in late B-cell development is incompletely understood. Using conditional deletion of relb and nfkb2 in GC B cells, we here report that ablation of both RELB and NF-κB2, but not of the single transcription factors, resulted in the collapse of established GCs. RELB/NF-κB2 deficiency in GC B cells was associated with impaired cell-cycle entry and reduced expression of the cell-surface receptor inducible T-cell costimulator ligand that promotes optimal interactions between B and T cells. Analysis of human tonsillar tissue revealed that plasma cells and their precursors in the GC expressed high levels of NF-κB2 relative to surrounding lymphocytes. Accordingly, deletion of nfkb2 in murine GC B cells resulted in a dramatic reduction of antigen-specific antibody-secreting cells, whereas deletion of relb had no effect. These results demonstrate that the transcription factors of the alternative NF-κB pathway control distinct stages of late B-cell development, which may have implications for B-cell malignancies that aberrantly activate this pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app