JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preclinical comprehensive physicochemical and pharmacokinetic profiling of novel nitroimidazole derivative IIIM-019 - A potential oral treatment for tuberculosis.

New compounds against tuberculosis are urgently needed to combat the crisis of drug resistance in tuberculosis (TB). We have identified a nitrodihydroimidazooxazole analog, IIIM-019 as a new anti-tubercular agent with a MIC of 0.23 μM against H37Rv. Physicochemical properties, in-vitro pharmacokinetics and in-vivo multiple-doses pharmacokinetics were studied for the compound. In silico physicochemical parameters and Lipinski's violations were determined for drug like properties. Lipophilicity was determined experimentally as Octanol-PBS partition coefficient (log P). Passive and active permeability of the compound was determined by PAMPA and Caco-2 cell permeability analysis, respectively. Plasma protein binding was determined by Rapid equilibrium dialysis. Metabolism by liver microsomes revealed the t1/2 and intrinsic clearance of the compound. Hepatotoxicity of IIIM-019 was determined alone and in combination to first line anti-tubercular drugs. The compound was also estimated for nuclear DNA damage. Single doses of IIIM-019 (2.5, 10, 25 and 100 mg/kg) were administered orally to Balb/c mice and the blood samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). IIIM-019 exhibited very good lipophilicity (log P) of 2.47 which makes it optimal for oral administration. The compound showed low solubility and permeability and high plasma protein binding. However, it was highly stable in rat liver microsomes with t1/2 > 2 h and very low intrinsic clearance. It was found to be non-hepatotoxic and did not induce any significant DNA damage at high concentrations even up to 100 μM. IIIM-019 showed satisfactory in-vivo pharmacokinetic properties. By increasing the dose from 2.5 mg/kg to 10 mg/kg, AUC0-t increased from 14935 ng h/ml to 81,478 ng h/ml. However the exposure of IIIM-019 in plasma suggested that the levels reached saturation at higher concentrations. The compound showed a good oral bioavailability of 58.7%. The results insinuate that IIIM-019 should undergo further development as a potential treatment for tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app