Add like
Add dislike
Add to saved papers

Out-of-Plane Magnetic Moment and Lattice Distortion in Sputtered Ge Added Fe3O4 Thin Film.

Fe3O4 has been known to have attractive physical properties for spintronic applications such as half-metallicity, however, its complicated magnetism has yet to be elucidated fully. We investigated the sputtered polycrystalline Fe3O4 thin film in which Ge was added for stabilization of the spinal structure. From X-ray photoelectron and Raman spectroscopies, major part of added Ge is found to be quadrivalent and considered to be incorporated in the spinel structure. Out-of-plane alignment of the local moment was confirmed by conversion electron Mössbauer spectroscopy and magnetization measurements with an applied field up to 70 kOe also support it. The Pawley refinement of the X-ray diffraction profile with a series of possible space groups in the spinel structure suggests that the crystal symmetry is reduced from cubic to tetragonal or orthorhombic spinels with (100) or (010) strains up to -0.231%. The uniaxial anisotropy constants K(u) for the tetragonally distorted cases estimated from the evaluated strains and the ab-initio calculation were found to be around 1.05 x 10(6) erg/cm3. We consider that the magnetic anisotropy induced by the lattice distortion contributes to the out-of-plane alignment of local moments in addition to the previously reported effect by the exchange coupling across crystallographic defects of the antiphase boundaries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app