Comparative Study
Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of pulsed three-dimensional CEST acquisition schemes at 7 tesla: steady state versus pseudosteady state.

PURPOSE: To compare two pulsed, volumetric chemical exchange saturation transfer (CEST) acquisition schemes: steady state (SS) and pseudosteady state (PS) for the same brain coverage, spatial/spectral resolution and scan time.

METHODS: Both schemes were optimized for maximum sensitivity to amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects through Bloch-McConnell simulations, and compared in terms of sensitivity to APT and NOE effects, and to transmit field inhomogeneity. Five consented healthy volunteers were scanned on a 7 Tesla Philips MR-system using the optimized protocols at three nominal B1 amplitudes: 1 μT, 2 μT, and 3 μT.

RESULTS: Region of interest based analysis revealed that PS is more sensitive (P < 0.05) to APT and NOE effects compared with SS at low B1 amplitudes (0.7-1.0 μT). Also, both sequences have similar dependence on the transmit field inhomogeneity. For the optimum CEST presaturation parameters (1 μT and 2 μT for APT and NOE, respectively), NOE is less sensitive to the inhomogeneity effects (15% signal to noise ratio [SNR] change for a B1 dropout of 40%) compared with APT (35% SNR change for a B1 dropout of 40%).

CONCLUSION: For the same brain coverage, spatial/spectral resolution and scan time, at low power levels PS is more sensitive to the slow chemical exchange-mediated processes compared with SS. Magn Reson Med 77:2280-2287, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app