Add like
Add dislike
Add to saved papers

Shikimic acid inhibits LPS-induced cellular pro-inflammatory cytokines and attenuates mechanical hyperalgesia in mice.

BACKGROUND AND AIMS: Shikimic acid (SA) is present in a wide variety of plants and microorganisms used in traditional and folk medicine and also is an essential starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu®). Some pharmacological actions observed in SA-enriched products include antioxidant and anti-inflammatory activities. Here, we investigated the anti-inflammatory and antinociceptive actions of isolated SA.

METHODS: RAW 264.7 macrophage cells were treated with bacterial LPS (1μg/mL) and the effect of SA on the modulation of cell viability, nitric oxide (NO) production, TNF-α, and IL-1β content and MAPK (ERK1/2 and p38) activation was evaluated. Besides, the anti-hyperalgesic actions of SA on in vivo model of mechanical hyperalgesia induced by carrageenan (CG), dopamine (DA), TNF-α and prostaglandin (PGE2) were assessed.

RESULTS: In RAW 264.7 cells, SA suppressed LPS-induced decrease in cell viability and nitrite accumulation to control values and inhibited up-regulation of TNF-α (65%) and IL-1β (39%). These effects may be mediated at least in part by inhibition of LPS-induced ERK 1/2 (22%) and p38 (17%) phosphorylation. In mice, SA at 50, 100, and 200mg/kg decreased formalin-induced nociceptive behavior (around 50%) and inhibited the inflammatory nociception induced by TNF-α and PGE2 (50 to 75% each). Moreover, SA (100 and 200mg/kg) significantly attenuated the mechanical hyperalgesia induced by CG and DA (25 to 40% each).

CONCLUSIONS: These results indicate that SA presents anti-inflammatory actions with potential for development of drugs to treat pro-inflammatory and painful conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app