JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Best practice for single-trial detection of event-related potentials: Application to brain-computer interfaces.

The detection of event-related potentials (ERPs) in the electroencephalogram (EEG) signal is a fundamental component in non-invasive brain-computer interface (BCI) research, and in modern cognitive neuroscience studies. Whereas the grand average response across trials provides an estimation of essential characteristics of a brain-evoked response, an estimation of the differences between trials for a particular type of stimulus can provide key insight about the brain dynamics and possible origins of the brain response. The research in ERP single-trial detection has been mainly driven by applications in biomedical engineering, with an interest from machine learning and signal processing groups that test novel methods on noisy signals. Efficient single-trial detection techniques require processing steps that include temporal filtering, spatial filtering, and classification. In this paper, we review the current state-of-the-art methods for single-trial detection of event-related potentials with applications in BCI. Efficient single-trial detection techniques should embed simple yet efficient functions requiring as few hyper-parameters as possible. The focus of this paper is on methods that do not include a large number of hyper-parameters and can be easily implemented with datasets containing a limited number of trials. A benchmark of different classification methods is proposed on a database recorded from sixteen healthy subjects during a rapid serial visual presentation task. The results support the conclusion that single-trial detection can be achieved with an area under the ROC curve superior to 0.9 with less than ten sensors and 20 trials corresponding to the presentation of a target. Whereas the number of sensors is not a key element for efficient single-trial detection, the number of trials must be carefully chosen for creating a robust classifier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app