Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural Basis of Backwards Motion in Kinesin-1-Kinesin-14 Chimera: Implication for Kinesin-14 Motility.

Structure 2016 August 3
Kinesin-14 is a unique minus-end-directed microtubule-based motor. A swinging motion of a class-specific N-terminal neck helix has been proposed to produce minus-end directionality. However, it is unclear how swinging of the neck helix is driven by ATP hydrolysis utilizing the highly conserved catalytic core among all kinesins. Here, using a motility assay, we show that in addition to the neck helix, the conserved five residues at the C-terminal region in kinesin-14, namely the neck mimic, are necessary to give kinesin-1 an ability to reverse its directionality toward the minus end of microtubules. Our structural analyses further demonstrate that the C-terminal neck mimic, in cooperation with conformational changes in the catalytic core during ATP binding, forms a kinesin-14 bundle with the N-terminal neck helix to swing toward the minus end of microtubules. Thus, the neck mimic plays a crucial role in coupling the chemical ATPase reaction with the mechanical cycle to produce the minus-end-directed motility of kinesin-14.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app