Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis.

Journal of Biomechanics 2016 September 7
The ability to navigate stairs step-over-step is an important functional outcome following severe lower leg injury and is difficult for many patients. Ankle-foot orthoses, such as the Intrepid Dynamic Exoskeletal Orthosis (IDEO), are often prescribed to improve function. This study compared stair climbing mechanics between IDEO users and able-bodied control participants. Thirteen IDEO users who sustained severe lower leg injury and 13 controls underwent biomechanical gait analysis. Participants ascended and descended a 16-step instrumented staircase without handrail use at a controlled cadence of 80 steps/min. Peak joint angles, moments, powers, and ground reaction forces, and integrated mechanical work were calculated. Independent t-tests with Bonferroni-Holm corrections were used to compare controls to IDEO and sound limbs. Reduced ankle range of motion on the IDEO limb resulted in compensatory strategies while ascending or descending stairs. During ascent, IDEO users had greater bilateral hip power during pull-up (p<0.007) to compensate for the IDEO limb׳s reduced ankle dorsiflexion (p<0.001) and knee extensor moment (p=0.001) while it was leading, and reduced ankle plantarflexor power while it was trailing (p<0.001). During stair descent, when the IDEO limb had was trailing, it had less ankle dorsiflexion during controlled lowering (p<0.001), resulting in greater vertical ground reaction force (p=0.005) and greater ankle and knee power absorption (p<0.001). Reduced IDEO limb ankle power absorption during weight acceptance (p<0.001) resulted in a large knee extensor moment (p<0.001) on the trailing sound limb to lower the body. Despite gait deviations, IDEO users were able to climb stairs step-over-step unassisted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app