JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The influence of increased membrane conductance on response properties of spinal motoneurons.

Brain Research 2016 October 2
During functional spinal neural network activity motoneurons receive massive synaptic excitation and inhibition, and their membrane conductance increases considerably - they are switched to a high-conductance state. High-conductance states can substantially alter response properties of motoneurons. In the present study we investigated how an increase in membrane conductance affects spike frequency adaptation, the gain (i.e., the slope of the frequency-current relationship) and the threshold for action potential generation. We used intracellular recordings from adult turtle motoneurons in spinal cord slices. Membrane conductance was increased pharmacologically by extracellular application of the GABAA receptor agonist muscimol. Our findings suggest that an increase in membrane conductance of about 40-50% increases the magnitude of spike frequency adaptation, but does not change the threshold for action potential generation. Increased conductance causes a subtractive rather than a divisive effect on the initial and the early frequency-current relationships and may have not only a subtractive but also a divisive effect on the steady-state frequency-current relationship.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app