JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Recognizing and engineering digital-like logic gates and switches in gene regulatory networks.

A central aim of synthetic biology is to build organisms that can perform useful activities in response to specified conditions. The digital computing paradigm which has proved so successful in electrical engineering is being mapped to synthetic biological systems to allow them to make such decisions. However, stochastic molecular processes have graded input-output functions, thus, bioengineers must select those with desirable characteristics and refine their transfer functions to build logic gates with digital-like switching behaviour. Recent efforts in genome mining and the development of programmable RNA-based switches, especially CRISPRi, have greatly increased the number of parts available to synthetic biologists. Improvements to the digital characteristics of these parts are required to enable robust predictable design of deeply layered logic circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app