JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically.

Cancer Letters 2016 October 11
Currently, it is a key challenge to remove the postsurgical residuals and metastasis of hepatocellular carcinoma (HCC). Oncolytic adenoviral virotherapy is an attractive treatment modality for cancer; however, the difficulty remains regarding its intravenous administration. The aim of this study was to develop a targeted therapeutic system which has great potential to overcome the postsurgical residuals and metastasis of HCC. In this system, we developed a conditionally replicative adenovirus (CRAd) loaded on human umbilical cord-derived mesenchymal stem cells (HUMSCs), in which the CRAd contained an adenovirus E1A gene dual regulated by α-fetoprotein promoter and microRNA-122 target sequence. When HUMSCs homed to the tumor sites and differentiated into hepatocyte-like cells within tumor microenvironment, the CRAds were packaged and released strictly to the local tumor. Subsequently, the CRAd lysed tumor cells selectively with the post-infection regulation. The study showed the specific oncolytic effect of the CRAd to HCC cells and the production of the CRAd by differentiated HUMSCs in vitro. Furthermore, we proved the hepatocyte-like transformation of HUMSC in the microenvironment of orthotopic or heterotopic hepatoma. Finally, this therapeutic system exhibited dramatic tumor inhibition on both orthotopic and subcutaneous hepatic xenograft tumor model mice with less toxicity on normal organs. The study results have demonstrated that this targeted therapeutic strategy is a promising method to resolve the problem of postsurgical residuals and metastasis of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app