Add like
Add dislike
Add to saved papers

Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging.

With the increasing environmental application and discharge of iron-based nanoparticles (NPs), a comprehensive understanding of their fate and ecotoxicological effect in the aquatic environment is very urgent. In this study, toxicities of 4 zero-valent iron NPs (nZVI) of different sizes, 2 Fe2O3 NPs of different crystal phases, and 1 type of Fe3O4 NPs to a green alga (Chlorella pyrenoidosa) were investigated, with a focus on the effects of particle size, crystal phase, oxidation state, and environmental aging. Results show that the algal growth inhibition of nZVI increased significantly with decreasing particle size; with similar particle sizes (20-30 nm), the algal growth inhibition decreased with oxidation of the NPs with an order of nZVI > Fe3O4 NPs > Fe2O3 NPs, and α-Fe2O3 NPs presented significantly higher toxicity than γ-Fe2O3 NPs. The NP-induced oxidative stress was the main toxic mechanism, which could explain the difference in algal toxicity of the NPs. The NP-cell heteroagglomeration and physical interactions also contributed to the nanotoxicity, whereas the effect of NP dissolution was negligible. The aging in distilled water and 3 surface water samples for 3 months increased surface oxidation of the iron-based NPs especially nZVI, which decreased the toxicity to algae. These findings will be helpful for the understanding of the fate and toxicity of iron-based NPs in the aquatic environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app