COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The Uremic Toxin Indoxyl-3-Sulfate Induces CYP1A2 In Primary Human Hepatocytes.

Chronic kidney disease (CKD) generally impacts clearance of renally eliminated drugs but growing evidence shows that it can influence clearance of hepatically eliminated drugs and a complete mechanistic understanding of this phenomenon is still lacking. CKD leads to accumulation of uremic toxins, including indoxyl- 3-sulfate (3-INDS) and indole-3-acetic acid (3-IAA).

OBJECTIVE: In this study, we evaluated the potential of 3-INDS and 3-IAA (10, 30 and 100 μM) to induce liver cytochrome P450 (CYP) enzymes CYP1A2, 2B6 and 3A4/5 using cultured primary human hepatocytes following once daily treatment for 3 days.

RESULTS: 3-INDS potently induced CYP1A2 mRNA and enzyme activity in a dose-dependent manner but did not induce CYP2B6 or 3A4. At 100 μM, a concentration observed in humans under uremic conditions, 3-INDS increased CYP1A2 mRNA and activity by 93% and 292% respectively when compared with prototypical inducer omeprazole. However, 3-IAA did not induce CYP1A2, 2B6 or 3A4.

CONCLUSION: These results suggest that the uremic toxin, 3-INDS, is a potent CYP1A2 inducer and lends valuable mechanistic basis for how kidney disease can affect hepatic metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app