Add like
Add dislike
Add to saved papers

Phenothiazines solution complexity - Determination of pKa and solubility-pH profiles exhibiting sub-micellar aggregation at 25 and 37°C.

The ionization constants (pKa) and the pH-dependent solubility (log S-pH) of six phenothiazine derivatives (promazine hydrochloride, chlorpromazine hydrochloride, triflupromazine hydrochloride, fluphenazine dihydrochloride, perphenazine free base, and trifluoperazine dihydrochloride) were determined at 25 and 37°C. The pKa values of these low-soluble surface active molecules were determined by the cosolvent method (n-propanol/water at 37°C and methanol/water at 25°C). The log S-pH profiles were measured at 24h incubation time in 0.15M phosphate buffers. The log S-pH "shape-template" method, which critically depends on accurate pKa values (determined independently of solubility data), was used to propose speciation models, which were subsequently refined by rigorous mass-action weighted regression procedure described recently. Differential scanning calorimetry (DSC), UV-visible spectrophotometry, potentiometric, and high performance liquid chromatography (HPLC) measurements were used to characterize the compounds. The intrinsic solubility (S0) values of the three least-soluble drugs (chlorpromazine·HCl, triflupromazine·HCl, and trifluoperazine·2HCl) at 25°C were 0.5, 1.1, and 2.7μg/mL (resp.). These values increased to 5.5, 9.2, and 8.7μg/mL (resp.) at the physiological temperature. The enthalpies of solution for the latter compounds were exceptionally high positive (endothermic) values (99-152kJ·mol(-1)). Cationic sub-micellar aggregates were evident (from the distortions in the log S-pH profiles) for chlorpromazine, fluphenazine, perphenazine, and trifluoperazine at 25°C. The effects persisted at 37°C for chlorpromazine and trifluoperazine. The solids in suspension were apparently amorphous in cases where the drugs were introduced as the chloride salts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app