Add like
Add dislike
Add to saved papers

Shear-Wave Measurements for Evaluation of Tendon Diseases.

This study investigated the feasibility of using supersonic shear wave measurements to quantitatively differentiate normal and damaged tendons based on their mechanical properties. Five freshly harvested porcine tendons excised from pig legs were used. Tendon damage was induced by incubating the tendons with a 1% w/v collagenase solution. Values of shear modulus were derived both by a time-of-flight (TOF) approach and by a transverse isotropic plate model (TI-model). Results show that as the preload applied to the tendon increased from 0 to 3 N, the mean shear modulus derived based on the TOF approach, the TI-model, and Young's modulus estimated from mechanical testing increased from 14.6 to 89.9 kPa, 53.9 to 348 kPa, and from 1.45 to 10.36 MPa, respectively, in untreated tendons, and from 8.4 to 67 kPa, 28 to 258 kPa, and from 0.93 to 7.2 MPa in collagenase-treated tendons. Both the TOF approach and the TI-model correlated well with the changes in Young's moduli. Although there is bias on estimation of shear modulus using the TOF approach, it still provides statistical significance to differentiate normal and damaged tendons. Our data indicate that the SSI is a valuable imaging technique to assess tendon stiffness dynamics and characterize normal and collagenase-damaged tendons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app