Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spatially Coherent Activation Maps for Electrocardiographic Imaging.

OBJECTIVE: Cardiac mapping is an important diagnostic step in cardiac electrophysiology. One of its purposes is to generate a map of the depolarization sequence. This map is constructed in clinical routine either by directly analyzing cardiac electrograms (EGMs) recorded invasively or an estimate of these EGMs obtained by a noninvasive technique. Activation maps based on noninvasively estimated EGMs often show artefactual jumps in activation times. To overcome this problem, we present a new method to construct the activation maps from reconstructed unipolar EGMs.

METHODS: On top of the standard estimation of local activation time from unipolar intrinsic deflections, we propose to mutually compare the EGMs in order to estimate the delays in activation for neighboring recording locations. We then describe a workflow to construct a spatially coherent activation map from local activation times and delay estimates in order to create more accurate maps. The method is optimized using simulated data and evaluated on clinical data from 12 different activation sequences.

RESULTS: We found that the standard methodology created lines of artificially strong activation time gradient. The proposed workflow enhanced these maps significantly.

CONCLUSION: Estimating delays between neighbors is an interesting option for activation map computation in electrocardiographic imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app