Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deferoxamine ameliorates hepatosteatosis via several mechanisms in ob/ob mice.

Hepatic iron accumulation may be responsible for the pathology of nonalcoholic fatty liver disease (NAFLD), which is both increasingly prevalent in conjunction with obesity and associated with comorbidities. The efficacy of iron reduction therapies, such as phlebotomy or dietary iron restriction, has been demonstrated in patient and animal models, including models of diabetes and obesity; however, the effects on and exact mechanisms responsible for iron depletion in NAFLD have not been clearly elucidated. Our study investigated the role of iron depletion by deferoxamine (DFO) treatment of ob/ob mice with hepatic steatosis. We found that DFO reduced hepatic iron deposition and regulated intracellular iron concentration in a homeostatic process following 15 days of treatment. Compared with vehicle treatment, DFO significantly improved hepatic steatosis by upregulating proteins related to lipid metabolism. Meanwhile, the reduction of free radical formation and proinflammatory cytokines, as well as the increase of hypoxia-inducible factor-1α pathway proteins and Bcl2/Bax ratio, further indicated that DFO was effective for liver protection and hepatic adaptation. These findings show that the intraperitoneal delivery of DFO provides a potential means of both preventing the progression of NAFLD and accelerating healing of hepatic steatosis, with the potential for rapid clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app