Add like
Add dislike
Add to saved papers

Possible neural oscillatory mechanisms underlying learning.

In response to Voelker et al. (this issue), we argue for a wide array of neural oscillatory mechanisms underlying learning and practice. While the authors propose frontal theta power as the basis for learning-induced neuroplasticity, we believe that the temporal dynamics of other frequency bands, together with their synchronization properties can offer a fuller account of the neurophysiological changes occurring in the brain during cognitive tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app