Add like
Add dislike
Add to saved papers

TIM-3 expression in lymphoma cells predicts chemoresistance in patients with adult T-cell leukemia/lymphoma.

Oncology Letters 2016 August
Adult T-cell leukemia/lymphoma (ATLL), an aggressive type of malignant lymphoma, is highly resistant to chemotherapy. However, the detailed mechanisms of the chemoresistance of ATLL have never been elucidated. We previously demonstrated that direct cell-cell interaction between macrophages and lymphoma cells was significantly associated with lymphoma progression in patients with ATLL. The present study aimed to further analyze the effects of cell-cell interaction between macrophages and ATLL cells by means of cell culture studies and immunohistochemical analysis using human ATLL samples. It was found that direct co-culture with macrophages induced chemoresistance in the ATLL ATN-1 cell line, but not in other cell lines, including TL-Mor, ED and ATL-2S. It was also found that expression of the T cell Ig and mucin domain-containing molecule-3 (TIM-3) was induced in ATN-1 cells by their long-term co-culture with macrophages. TIM-3 gene transfection induced chemoresistance in the ATN-1 cells. Immunostaining of ATLL tissues showed TIM-3 expression in 25 out of 58 ATLL cases. Although TIM-3 expression was not associated with overall survival or T classification, it was associated with resistance to chemotherapy. TIM-3 expression is therefore considered to be a marker for predicting the efficacy of chemotherapy, and TIM-3-associated signals may be a therapeutic target for patients with ATLL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app