Add like
Add dislike
Add to saved papers

Testosterone Protects Mitochondrial Function and Regulates Neuroglobin Expression in Astrocytic Cells Exposed to Glucose Deprivation.

Testosterone is a hormone that has been shown to confer neuroprotection from different insults affecting the central nervous system (CNS). Testosterone induces this protection by different mechanisms that include the activation of anti-apoptotic pathways that are directly implicated in neuronal survival. However, little attention has been devoted to its actions on glial cells. In the present study, we have assessed whether testosterone exerts protection in a human astrocyte cell model, the T98G cells. Our results indicate that testosterone improves cell survival and mitochondrial membrane potential and reduces nuclear fragmentation and reactive oxygen species (ROS) generation. These effects were accompanied by a positive regulation of neuroglobin, an oxygen-binding and sensor protein, which may serve as a regulator of ROS and nitrogen reactive species (NOS), and these protective effects of testosterone may be at least in part mediated by estradiol and DHT. In conclusion, these findings suggest that astroglia may mediate some of the protective actions of testosterone in the brain upon pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app